Year 6 maths - Summer 2 Week beginning: 13.7.20

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Year 6 maths - Summer 2 Week beginning: 13.7.20} \\
\hline Theme \& CONSOLIDATION LESSON Fractions Comparing Fractions \& CONSOLIDATION LESSON Decimals Multiplying Decimals \& CONSOLIDATION LESSON Decimals Dividing Decimals \& CONSOLIDATION LESSON Factors \& CONSOLIDATION LESSON Multiplication \\
\hline Factual fluency (to aid fluency) \& Practise the four operations Activity \& Practise using decimals in word problems Activity \& Practise decimal division Activity \& Practise the four operations with decimals Activity \& Practise the four operations word problems Activity \\
\hline \begin{tabular}{l}
Problem/ activity of the day \\
Remember, just like in class, you can still show the depth of your knowledge LINK
\end{tabular} \& \begin{tabular}{l}
(Lesson 1 resources below) MAKING LINKS: You have compared fractions in years 4, 5 and 6. \\
THINK: (support below) \\
Can you help me to order these fractions from smallest to greatest?
\[
1 \frac{4}{7} \quad 2 \frac{2}{3} \quad 1 \frac{1}{2}
\] \\
SEE: (model below) \\
Check the solution below. \\
DO: Use what you have learnt today to solve: \\
PART 1: Complete the questions in part 1 below. \\
Check your answers below before moving on to: PART 2: Complete the questions in part 2 below.
\end{tabular} \& \begin{tabular}{l}
(Lesson 2 resources below) MAKING LINKS: Today you are going to multiply decimal numbers. You have learnt this in year 6. \\
THINK: (support below) Can you use these digit cards to create a multiplication calculation using a decimal number? \\
2 \\
3 \(\square\) 5

\times \square

SEE: (model below)

Check the solution below.

DO: Use what you have learnt today to solve:

PART 1: Complete the questions in part 1 below.

Check your answers below before moving on to:

PART 2: Complete the questions in part 2 below.

 \&

(Lesson 3 resources below) MAKING LINKS: Today you are going to divide decimal numbers. You have learnt this in year 6.

THINK: (support below) My friend says division of decimal numbers is the same as division of whole numbers. Is she correct?

SEE: (model below)

Check the solution below.

DO: Use what you have learnt today to solve:

PART 1: Complete the questions in part 1 below.

Check your answers below before moving on to: PART 2: Complete the questions in part 2 below.

 \&

(Lesson 4 resources below) MAKING LINKS: Today we are going to investigate factors. You learned about factors in year 5 and 6.

THINK: (support below)

Factor Track. Starting on the (yellow) 60, make your way round to the (red) 'end' square.

You can move any factor of the number you are on except 1. So think of the factors of 60 and move that number of squares. You must land exactly on each green square, so you can't go round corners in one move. Go round the track in as few moves as possible.

SEE: (model below)

You could use division to think of the factors of each number, $60 \div 2$ so 2 is a factor of 60 .

DO: Use your understanding of factors to go around the track in as few moves as possible.

 \&

(Lesson 5 resources below) MAKING LINKS: This week we are going to investigate multiplication.

THINK: (support below) Enjoy this old riddle. Can you solve it using multiplication?

As I was going to St. Ives, I met a man with seven wives. The seven wives had seven sacks and the seven sacks had seven cats. The seven cats had seven kits. Wives, sacks, cats, kits: how many were going to St. Ives?

SEE: (model below)

Check the support below.

DO: Use what you have learnt today to CREATE your own maths riddle. You may want to use different numbers to multiply in the same kind of riddle as above?
\end{tabular}

\hline
\end{tabular}

See below for resources to support you to THINK-SEE-DO

DAY 1 RESOURCES:

THINK: Can you help me to order these fractions from smallest to greatest?

$$
1 \frac{4}{7} \quad 2 \frac{2}{3} \quad 1 \frac{1}{2}
$$

DO: Use what you have learnt today to solve:
Part 1: Arrange the fractions in ascending order:
$1 \frac{1}{3} \quad 1 \frac{3}{4} \quad 1 \frac{1}{2}$

Check your answers before moving onto:
Part 2: complete the questions below:

Use the times tables grid to help you to list the multiples for each denominator to find the smallest multiple that is common to all three denominators.

SEE: When comparing numbers we first check to see which amount is the greatest. If all the numbers are similar we then compare like numbers with like. Hundreds with hundreds, tens with tens, ones with ones, tenths with tenths, same denominator with same denominator!

These numbers are all made up of ones and fractions.
We are ordering them in ascending order so least to greatest.
If we compare the ones, we can see quickly the middle number is the greatest as it contains 2 ones:

The remaining numbers both contain 1 one so we must next look at the fractions and compare them.
To compare fractions we must make them the same 'type'. We do that by converting them to fractions with the same denominator, the common denominator.

$2 \frac{2}{3}$

We have sevenths and halves.
What multiple is common to both these denominators? 14 !
So we can convert both fractions to 'fourteenths'.
To convert sevenths to fourteenths we multiply both the numerator and denominator by 2.
To convert halves to fourteenths we multiply both the numerator and denominator by 7 .

$$
\frac{4}{7}=\frac{8}{14} \quad \text { and } \quad \frac{1}{2}=\frac{7}{14}
$$

Now we can order the fractions:

If we had three fractions with different denominators we would have to find a multiple common to all three denominators!

X	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

Quality First Education Trust

SEE:

Remember:

Multiply the numbers just as if they were whole numbers!

1. Line up the numbers on the right - do not
align the decimal points.
2. Starting on the right, multiply each digit in the top number by each digit in the bottom number, just as with whole numbers.
3. Add the products.
$\mathrm{T} \bigcirc \cdot \frac{1}{10 \mathrm{~s}} \frac{1}{100 \mathrm{~s}}$

Or use the compact method!
Multiply each digit and remember to add any numbers you have renamed.

Watch the video from year 5 plans to remind yourself of ways to multiply.
Recap formal multiplication methods we learned in year 5, watch the steps for formal multiplication here and the year 5 lesson video here.

THINK:			
My friend says division of decimal numbers is the same division of whole numbers. Is she correct?			
DO:			
Part 1: complete the questions below:			
$2.316 \div 3=$			
$0.296 \div 4=$			
Check your answers before moving onto:			
Part 2:			
$2 \longdiv { 1 . 4 2 1 }$	$3 \longdiv { 0 . 5 1 0 }$	$2 \longdiv { 0 . 9 2 1 }$	$6 \longdiv { 7 . 6 3 8 }$
$9 \longdiv { 3 . 9 2 8 }$	$2 \longdiv { 9 . 9 2 0 }$	$8 \longdiv { 9 . 3 8 8 }$	$9 \longdiv { 4 . 3 3 4 }$
$5 \longdiv { 1 . 7 1 7 }$	$8 \longdiv { 0 . 5 9 5 }$	$4 \longdiv { 2 . 3 9 6 }$	$3 \longdiv { 6 . 1 3 1 }$

SEE:

Divide the decimal number as you would a whole number.
Remember to move and rename any amounts that you cannot subtract multiples of the divisor from.

$$
\text { O. } \frac{1}{10 s} \frac{1}{100 s}
$$

0.247
 $5 \longdiv { 1 . 2 ^ { 2 } 3 ^ { 3 } 5 }$

Remember to ask yourself, can we take more multiples of the divisor?

I can take 0 fives from 1.
Leaving 1 to move to the next place.
Now, I can take 2 fives from 12.
Leaving 2 to move to the next place.
Next, I can take 4 fives from 23.
Leaving 3 to move to the next place.
Finally, I can take 7 fives from 35.

Watch the video from year 5 plans to remind yourself of ways to divide.
Recap the division methods we learned in year 5 , watch the year 5 division lesson video here.

THINK:

Factor Track. Starting on the (yellow) 60, make your way round to the (red) 'end' square.
You can move any factor of the number you are on except 1 .
You must land exactly on each green square, so you can't go round corners in one move. Go round the track in as few moves as possible.

DO: Factor Track is not a race but a game of skill!

The idea is to go round the track in as few moves as possible, keeping to the rules. You might try writing down all factors of the numbers in the green squares. Keep a note so you know which routes you have tried?

Rules:

You start on the (yellow) 60 and must make your way round to the (red) 'end' square.
You can move any factor of the number you are on, except 1 .
You must land exactly on each green square, so you can't go round corners in one move.

Have a go at moving round this 'training' track following the rules.
Can you do it in fewer moves?
What is the best route to take to do it in the least number of moves? Which squares do you need to land on?

To start, think of the factors of 60 and move that number of squares. You could use division to think of the factors of each number,
$60 \div 2=30$ so 2 is a factor of 60 .
Factors of 28 are: 2, 4, 7, 14.
Factors of 18 are: 2, 3, 6, 9.
Factors of 14 are: 2, 7.
Write down the factors of the numbers in the green squares to help you.

DAY 5 RESOURCES:

THINK: Enjoy this old riddle. Can you solve it using multiplication?

As I was going to St. Ives, I met a man with seven wives. The seven wives had seven sacks and the seven sacks had seven cats. The seven cats had seven kits. Wives, sacks, cats, kits: how many were going to St. Ives?

DO:

Create your own maths riddle.
You could use the same format as the riddle above or make up your own.
It must be solved with addition, subtraction, multiplication or division!

Use the 7 times tables to help you:
$7 \times 1=7$
$7 \times 2=14$
$7 \times 3=21$
$7 \times 4=28$
$7 \times 5=35$
$7 \times 6=42$
$7 \times 7=49$
$7 \times 8=56$
$7 \times 9=63$
$7 \times 10=70$

SEE:

Some people say the answer is 1 since only the narrator says he was going to St. Ives but imagine if they were all going.

How many would be going there?
Continue calculating:
$1 \times$ narrator
$1 \times \mathrm{man}$
$7 \times$ wives
If 7 wives had 7 sacks each, how many $7 s$ would that be? $7 \times 7=49$
If there are 49 sacks, how many cats would there be?
7×49 ?

Narrator	Man	Wives	Sacks	Cats	Kits (kittens)
1	1	7			
Each wife has 7 sacks.					

ANSWERS - part 1:

Quality First Education Trust

