Year 6 maths - Summer 2 Week beginning: 8.6.20

Year 6 maths - Summer 2 Week beginning: 8.6.20					
Theme	Graphs and averages (Lesson 1 of 12) Understanding averages	Graphs and averages (Lesson 2 of 12) Calculating the Mean	Graphs and averages (Lesson 3 of 12) Calculating the Mean	Graphs and averages (Lesson 4 of 12) Solving Problems Involving the Mean	Graphs and averages (Lesson 5 of 12) Showing Information on Graphs
Factual fluency (to aid fluency)	Division activity Division facts to 12	Division activity Division facts to 12	Division activity Division by 1 -digit numbers	Division activity Division by 1 -digit numbers	Reading a table activity Reading tables
Problem/ activity of the day Remember, just like in class, you can still show the depth of your knowledge LINK	(Lesson 1 resources below) MAKING LINKS: In spring term we looked at graphs. Today we are starting to work on averages. THINK: (support below) Can you help me with this problem? Five friends and I had pizza for lunch. Although we ate different amounts we would like to know how much pizza per child that is. Can you help find an answer that is just one number? Our problem is on textbook page 214. Look at it now. SEE: (model below) Look at the different ways to solve the problem on pages 215 and 217 of your textbook. Watch the lesson videos part 1 and_part 2 DO: Use what you have learnt today to solve: Part 1: questions 1, 2 and 3 from textbook page 217 and 218. Check your answers before moving onto: Part 2: Workbook, Chapter 14, Worksheet 1, pages 153-154	(Lesson 2 resources below) MAKING LINKS: Yesterday we looked at averages. Today we are starting to work on calculating the mean. THINK: (support below) Can you help me with this problem? Various amounts of goals were scored in different groups of teams in a football tournament. Can you help find a number that represents the goals scored by the teams in each group? Our problem is on textbook page 219. Look at it now. SEE: (model below) Look at the different ways to solve the problem are shown on pages 220 and 221 of your textbook and watch the lesson video here DO: Use what you have learnt today to solve: Part 1: questions 1 and 2 from textbook page 222. Check your answers before moving onto: Part 2: Workbook, Chapter 14, Worksheet 2, pages 155-156	(Lesson 3 resources below) MAKING LINKS: Yesterday we started work on calculating the mean. Today we are going to continue with that. THINK: (support below) Can you help me with this problem? I'd like to find the ages of each person in a group of people. All I know is that the mean age of the group is 12 years old and there are five people in the group. Our problem is on textbook page 223 Look at it now. SEE: (model below) Look at the different ways to solve the problem are shown on pages 223 and 224 of your textbook. DO: Use what you have learnt today to solve: Part 1: questions 1 and 2 from textbook page 225. Check your answers before moving onto: Part 2: Workbook, Chapter 14, Worksheet 3, pages 157-158	(Lesson 4 resources below) MAKING LINKS: Yesterday we worked on calculating the mean. Today we are going to solve problems involving the mean. THINK: (support below) Can you help me with this problem? My friend played6 games in a basketball tournament. For 4 games her mean score was 13 , but for all 6 games her mean score was 14. How many points did she score in the last 2 games? Our problem is on textbook page 226. Look at it now. SEE: (model below) Look at the different ways to solve the problem are shown on pages 226 and 227 of your textbook and see this video of solving problems involving the mean. DO: Use what you have learnt today to solve: Part 1: questions 1 and 2 from textbook page 227. Check your answers before moving onto: Part 2: Workbook, Chapter 14, Worksheet 4, pages 159-160	(Lesson 5 resources below) MAKING LINKS: Yesterday we worked on solving problems involving the mean. Today we are going to show information on graphs. THINK: (support below) Can you help me with this problem? The children in my class voted on their favourite colour t-shirt. There were 24 children and they voted on blue, red, yellow or green. How can you represent the information in different ways? Our problem is on textbook page 228. Look at it now. SEE: (model below) Look at the different ways to solve the problem are shown on pages 228 to 231 of your textbook. DO: Use what you have learnt today to solve: Part 1: questions 2 from textbook page 232. Check your answers before moving onto: Part 2: Workbook, Chapter 14, Worksheet 5, pages 161-162
Methods, tips, clues \& checks	Day 1 resources and answers (below)	Day 2 resources and answers (below)	Day 3 resources and answers (below)	Day 4 resources and answers (below)	Day 5 resources and answers (below)

See below for resources to support you to THINK-SEE-DO

THINK: Our problem is on textbook page 214.
Five friends and I had pizza for lunch. Although we ate different amounts we would like to know how much pizza per child that is.
Can you help find an answer that is just one number?

You could use pieces of pasta, sweets or post-it notes to represent each piece of pizza. Watch the lesson video here, using sweets instead of pizza!

DO:

Part 1: questions 1, 2 and 3 from textbook page 217 and 218.
For help with question 3 on page 218, watch this video.
Check your answers before moving onto:
Part 2: Find the mean. Workbook, Chapter 14, Worksheet 1, pages 153-154

Remember

Mean = average
The mean is the total of the numbers divided by how many numbers there are.

To find the mean, add all the numbers together and then divide by how many numbers there are.

- i.e. $6+3+100+3+13=125$
- $125 \div 5=25$
- The mean is 25 .

The mean is not always a whole number.

SEE: Look at the different ways to solve the problem on pages 215 and 217 of your textbook. Or watch the video link (part 1) here.

You could use pieces of pasta or post-it notes to represent each piece of pizza

Mean: What number do we get when we add up all the amounts and then share that total out? Once we divide the total by the number of amounts we had we reach the mean.
$2+2+2+4+5=15$ divided between $5=3$
The number we reached is 3 after we added the amounts up to make 15 and then divided by the number of amounts (there are 5 amounts) so we say the mean is 3

Median: Which number is in the middle when we put all the amounts in order from the least to the most (or most to least)? The middle amount is the median.
2, 2,(2)4, 5
The middle number is 2 so we say 2 is the median.
Mode: which amount occurs most often? That's the mode.
$2,2,2,4$ and 5
The number that is listed the most is 2 so we say the mode is 2 .

Note:

There are different ways to calculate average but most people associate average with the mean.
This video (link) may support your understanding.

THINK: Our problem is on textbook page 219.
Various amounts of goals were scored in different groups of teams in a football tournament. Can you help find a number that
represents the goals scored by the teams in each group?

Which 'average' are we trying to find?
Mean: The number we reach after we add all the amounts and
then divide by the number of amounts is the mean
Median: Once we have listed the amounts in order from least to most the middle amount is the median.

Mode: The number that occurs the most is the mode.

DO:

Part 1: questions 1 and 2 from textbook page 222.

Remember: the information given is the number of goals over three matches.

Check your answers before moving onto:
Part 2: Workbook, Chapter 14, Worksheet 2, pages 155-156
Remember
To find the mean, add all the numbers together and then divide by how many numbers there are.

- i.e. $6+3+100+3+13=125$
- $125 \div 5=25$
- The mean is 25 .

The mean is not always a whole number.

SEE: Look at the different ways to solve the problem shown on pages 220 and 221 of your textbook.

Remember we are finding the mean for each group.
If we add up all the goals scored by all the teams in group D
We have $4+4+2+2=12$
Then we divide that total by the number of teams to reach the mean:

12 goals divided by 4 teams is an average of 3 goals each team

This video (link) may support your understanding.
See lesson video here

DAY 3 RESOURCES:

THINK: Our problem is on textbook page 223
I'd like to find the ages of each person in a group of people. All I know is that the mean age of the group is 12 years old and there are five people in the group.

Can you find different solutions?
Challenge yourself to find the oldest and youngest possible ages.
Remember:
Mean: The number we reach after we add all the amounts and then divide by the number of amounts is the mean

Tip: If we are trying to find the age of each person with the mean age would it help if we started by finding the total of their ages?

DO:

Part 1: questions 1 and 2 from textbook page 225.
TOP TIP for question 2: think of 3 numbers that when they are added together and then $\div 3=170$.

Check your answers before moving onto:
Part 2: Workbook, Chapter 14, Worksheet 3, pages 157-158, questions 1 and $2 \mathrm{a}, \mathrm{b}$ and c .

Remember

To find the mean, add all the amounts together and then divide by the number of amounts.

The mean is not always a whole number.
TOP TIP for question 2 c : think of 3 numbers that when they are added together and then $\div 3=450$.

SEE: Look at the different ways to solve the problem shown on pages 223 and 224 of your textbook.

To start with we can use the mean age (12 years old) as the age for every person in the group.
$12+12+12+12+12=60$
Then we can think of five different amounts that would make a total of 60 . Each of these amounts would be one persons' age.

What five amounts can you think of to make a total of 60?
\qquad $+$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad $=60$

THINK: Our problem is on textbook page 226.
My friend played 6 games in a basketball tournament. For 4 games her mean score was 13, but for all 6 games her mean score was 14. How many points did she score in the last 2 games?

Remember:

For 4 games the mean was 13 but for 6 games the mean was 14 so the scores in games 5 and 6 made the mean increase.

DO:

Part 1: question 1 from textbook page 227.

7 years old
Mean of 4 siblings
Total of 4 siblings age is \qquad

5 years old
Mean of 3 siblings

$$
\text { Total of } 3 \text { siblings age is }
$$

Check your answers before moving onto:
Part 2: Workbook, Chapter 14, Worksheet 4, page 159, question 1.

SEE: Look at the different ways to solve the problem shown on pages 226 and 227 of your textbook.

If the mean score for 4 games was 13 we would have a total score of 52 points
$13+13+13+13=52$
If the mean score of 6 games was 14 we would have a total score of 84 points
$14+14+14+14+14+14=84$
The difference between 4 games and 6 games is 32
$84-52=32$
So my friend scored 32 points in the last two games!
See this video for an example of solving problems involving the mean.
page 159, question 2.
2 adults and 2 children Total $=$

| 21.5
 years |
| :---: | :--- | :--- | :--- | :--- |

29.5	29.5 years

DAY 5 RESOURCES:

THINK: Our problem is on textbook page 228.
The children in my class voted on their favourite colour t-shirt. There were 24 children and they voted on blue, red, yellow or green. How can you represent the information in different ways?

Try to present you data in 3 different ways.

Remember:

You can present data in bar graphs, pictograms, line graphs, pie charts and tables.
Think about the kind of data you are presenting before deciding on how you will present it.

DO:

Part 1: question 2 from textbook page 232.
Check your answers before moving onto:
Part 2: Workbook, Chapter 14, Worksheet 5, pages 161-162

TOP TIPS

Count how many sections there are in the pie chart.

Always refer to the total given, i.e. 24 children.
Work out the value of each section of the pie chart by referring to the total given.

SEE: Look at the different ways to solve the problem shown on pages 228 to 231 of your textbook.

The method on page 231 uses a strip of paper divided into 24 parts to create a pie chart.
This is the number of coloured t-shirts we have.

1 part in the strip of paper represents 1 t -shirt.
12 out of 24 t -shirts are blue. $12 / 24$ or $1 / 2$. Half the t-shirts are blue.
2 out of 24 are red. 2/24 or 1/12 are red
6 out of 24 are yellow. 6/24 or $1 / 4$ are yellow. A quarter of the t-shirts are yellow.

4 out of 24 are green. $4 / 24$ or 1/5 are green
We can create a circle with our strip of paper that shows how much of our pie chart (a circle) should be shaded for each t-shirt colour. If we cut our circle (pie chart) into 24 pieces we can shade-in the correct amounts.

ANSWERS - part 2:

Day 1	Day 2	Day 3	Day 4	Day 5
Part 2: Workbook, Q.1: average 7 stars	Part 2: Workbook, Q.1:	Part 2: Workbook, Q.1:	Part 2: Workbook, Q.1: 162.6 cm	Part 2: Workbook, Q. 1 :
Q.2: average 7.4 pupils	$A=1.6875$	The Smiths $=23.5$	Q.2: 13.5	3 parts are shaded blue
Q.3: average 9 books	$B=6.75$	The Joneses $=25.8$		5 parts are shaded red
	$\text { Q.2: } 8.2$	The Joneses have the highest mean age.		1 part is shaded yellow 2 parts are shaded grey
	Q.3: Hannah $=7$	Q.2:		Q.2:
	Ravi $=7$	$A=150 \mathrm{~g}$		5 parts are chocolate chip
	$\text { Lulu = } 8.7$	$B=Y e s$, all the oranges could have a mass of 150 g		4 parts are vanilla
	Elliott = 9	$C=$ Yes, as long as the overall mass of the 3 oranges total		I part is oatmeal 2 parts are strawberry

Quality First Education Trust

