Year 6 maths - Week Beginning 04.05.20					
Theme	Geometry lesson 1 Investigating opposite angles	Geometry lesson 2 Investigating angles in triangles	Geometry lesson 3 Investigating angles in quadrilaterals	Geometry lesson 4 Solving problems involving angles in triangles and quadrilaterals	Geometry lesson 5 Investigating circles
Factual fluency (to aid fluency)	Measure angles using a protractor here	Find missing angles here	Find missing angles (2) here	Find missing angles (3) here	Find missing angles (4) here
Problem/ activity of the day	(Lesson 1 resources below) MAKING LINKS: In year 5, we investigated angles on a line see here and at a point see here THINK: (support below) My friend says that when 2 straight lines cross, it creates opposite angles that are equal. Do you agree/disagree? Can you prove it? SEE: (model below) Watch lesson video here. DO: Use what you have learned today to solve the problems.	(Lesson 2 resources below) MAKING LINKS: In year 4 and 5, we learnt the properties of different types of triangles. Use this link as a reminder. THINK: (support below) My friend says the angles in a triangle always add up to 180°. Do you agree/disagree? Can you prove it? SEE: (model below) Watch lesson video here. DO: Use your knowledge of isosceles triangles and what you have learned today to solve the problems.	(Lesson 3 resources below) MAKING LINKS: In year 4 and 5, we learnt the properties of quadrilaterals. Use this link as a reminder. THINK: (support below) My friend says the angles in a quadrilateral always add up to 360°. Do you agree/disagree? Can you prove it? Tip: Yesterday we learnt that the sum of the angles in a triangle is 180°. Does this help? SEE: (model below) Watch lesson video here. DO: Use your knowledge of isosceles triangles and what you have learned today to solve the problems. Remember: parallelograms have 2 pairs of opposite angles that are equal. See here for more.	(Lesson 4 resources below) MAKING LINKS: On Tuesday and Wednesday, we solved problems involving angles in triangles and quadrilaterals. THINK: (support below) My friend thinks she can work out the size of angles in regular pentagons and hexagons without a protractor Do you agree/disagree? Can you do it? Tip: Pentagons and hexagons are made up of triangles and quadrilaterals. SEE: (model below) Watch lesson video here. DO: Use what you have learned today to solve the problems. Remember: the sum of the angles in a triangle is 180°. Remember: the sum of the angles in a quadrilateral is 360°.	(Lesson 5 resources below) MAKING LINKS: In year 4 and 5 , we learnt the properties of shapes. THINK: (support below) A circle has a diameter, a radius and a circumference. See below or click here for more. What is the relationship between the diameter and the radius? What kind of triangle is created in the circle above? How do you know? SEE: (model below) Watch lesson video here. DO: Use what you have learned today to solve the problems.
Time to check	Day 1 resources and answers (below)	Day 2 resources and answers (below)	Day 3 resources and answers (below)	Day 4 resources and answers (below)	Day 5 resources and answers (below)

THINK: My friend says that when 2 straight lines cross, it creates opposite angles that are equal.

Get two pencils (or anything straight) and make them cross at a point. Move the pencils to see how the angles change. What do you notice? After drawing lots of straight lines that cross you could cut along one of the lines and rotate it 180° so that it points in the opposite direction and lay it on top of its opposite angle. Can you work out why they are equal? You can rotate intersecting lines to see why here
SEE: lesson video here.

When I rotate my figure, I see that both sides of the straight lines HAVE EQUAL ANGLES

When I use a protractor to measure the opposite angles, I find THEY ARE EQUAL

The diagram to the left (bottom) shows $a+b=180$ and angle $b+c=180$ so angle $a=$ angle c

KEY POINT: Straight lines that cross create two pairs of equal opposite angles

MAKING CONNECTIONS:

I can see that all 4 angles add up to 360°.
$100+100+80+80=360$
I can see that angles on a straight line add up to 180°. $80+100=180$ and $100+80=180$

DO: Solve these problems

1. Which angles are equivalent?
 angle \square = angle \square and angle \square =angle \square
2. Find the missing angles
angle $b=$
angle $c=$
angle $d=$

3. Find the missing angles

TOP TIPS: Look for 90° symbol 490°. Opposite angles are equal. Angles on a straight line add up to 180°.

A whole turn is 360°.
It might help you if you write the information that you know in the diagram.

Quality First Education Trust

THINK: My friend says the angles in a triangle always add up to 180°.

After drawing several different triangles, you should cut the angles out and arrange them on a straight line to see if they add up to 180°. You could also use a protractor (if you have one).

SEE: lesson video here.

DO:
Find angle a, b, c, d, e and f

Remember:
The angles in a triangle add up to 180°.

[^0]THINK: My friend says the angles in a quadrilateral always add up to 360°.

Rectangle
All angles 90° Opposite sides equal

Square All angles 90° All sides equal

Rhombus All sides equal Opposite side pposite sid
parallel

Parallelogram
Opposite sides parallel
and equal

Trapezoid (US) Trapezium (UK)

Two sides parallel

Kite Adjacent pairs of sides equal

After drawing several different quadrilaterals, you could cut the quadrilaterals into triangles using one cut and you could also use a protractor (if you have one).
Tip: Yesterday we learnt that the sum of the angles in a triangle is 180°. Does this help?
SEE: lesson video here.

I can see that quadrilaterals can be split into two triangles by drawing a straight line from one vertex to another. If the angles in a triangle add up to $1 \mathbf{8 0}^{\circ}$ then quadrilaterals (two triangles) must have interior angles adding up to 360°.

When I cut the angles out and join them together they make a full circle WHICH IS 360°.
When I use a protractor to measure the angles in a quadrilateral, I find THEY ADD UP TO 360°. (if you are wrong by one or two degrees, that is very normal - 358° to 362° is accurate enough to show that the angle add up to 360°)

MAKING CONNECTIONS:

Squares have 4 equal angles and each angle is 90° because $360 \div 4=90$
Parallelograms have opposite angles which are equal so I only need to know one angle to find them all see here to explore this further.

DO: Find angle a, b, c, d, e and f

Remember:

The angles in a quadrilateral add up to 360°. Look for angles that are equal.
Look for angles that measure 90°.

THINK: My friend thinks she can work out the size of angles in regular pentagons and hexagons without a protractor.

Yesterday, we learnt that the sum of the angles in a quadrilateral is 360°.
Tuesday, we learnt that the sum of the angles in a triangle is 180°.
Tip: Try drawing regular pentagons and hexagons using triangles and quadrilaterals
SEE: lesson video here.

5-sides 3 triangles

A pentagon is made up of $\mathbf{3}$ triangles
 Angles in a triangle ADD UP TO $18 \mathbf{0}^{\circ}$.

$180 \times 3=540$ so the angles in a pentagon must add up to 540°
If the angles in a pentagon add up to 540° and there are 5 equal angles in a regular pentagon then each angle must be 120° because $540 \div 5=108$

When I use a protractor to measure the angles in a reglular pentagon, I find are all 108°.
A hexagon is made up of 4 triangles and angles in a triangle ADD UP TO $18 \mathbf{1 0}^{\circ}$.
$4 \times 180=\mathbf{7 2 0}$ so the angles in a hexagon must add up to 720°.
If the angles in a hexagon add up to 720° and there are 6 equal angles in a regular hexagon then each angle must be 120° because $\mathbf{7 2 0} \div \mathbf{6 = 1 2 0}$

When I use a protractor to measure the angles in a reglular hexagon, I find are all 120°.

Making connections:

- I can also see that a hexagon is made up of two quadrilaterals (which is the same as 4 triangles) and a pentagon is made up of 1 quadrilateral and one triangle (which is the same as 3 triangles)
- Shapes with more than three sides can all be divided into triangles.
the number of sides minus $2=$ the number of triangles
Explore more here

DO:

Solve these problems
two triangles have been done for you already.

1. Find the sum of the interior angles of a regular octagon.
2. Find the size of each interior angle in a regular octagon

TOP TIPS
Choose a vertex and draw a line to another vertex to create a triangle. Repeat with the same vertex until you have joined it to all the vertex you can. Count how many triangles you have made.
Q) 3, 4 and 5

Find:

3) $d+e+f$
4) $b+c+d$
5) $a+b+c+d+e+f+g+h+i$

THINK: What is the relationship between the diameter and the radius? What kind of triangle is created inside the circle on the right (below)? Why?

Tip: An isosceles triangle is a triangle with two equal sides and two equal angles. What is the connection to the circle above (on the right)?
SEE: lesson video here. and further information here

180-38-38=104

- The Radius is the distance from the centre outwards.
- The Diameter goes straight across the circle, through the centre.
- The diameter is always double the length of the radius.
- The triangle is an isosceles triangle because two of the sides are the same length (because they are radii). Because of this, two of the angles are the same. See more here
- Knowing this can help us to solve problems involving circles.

DO:

Solve these problems

3) Find the missing angles

ANSWERS:

Day 1

ANSWERS:

Day 2	Day 3	Day 4	Day 5
$a=103^{\circ}$	$a=87^{\circ}$	1) 1080° - An octagon is made up of 6	1) 3.6 cm
$b=65^{\circ}$	$b=133^{\circ}$	trangle	2) 35 mm
c $=126^{\circ}$	$C=116^{\circ}$	2) 135° - An octagon has eight equal angles so $1080 \div 8=135$	
			$t=31^{\circ}$
$d=27^{\circ}$	$d=64{ }^{\circ}$	3) 180°	$s=118^{\circ}$
			$\mathrm{u}=70^{\circ}$
$\mathrm{e}=38^{\circ}$	$e=116^{\circ}$	4) 180°	
$\mathrm{f}=71^{\circ}$			
	$\mathrm{f}=137^{\circ}$	5) 540°	$\begin{aligned} & x=80^{\circ} \\ & y=50^{\circ} \end{aligned}$
			$\mathrm{z}=50^{\circ}$

[^0]: Explore this website for more information about triangles.

