Year 3 maths week 2

5 days of problem solving	Day 1 Activity	Day 2 Activity	Day 3 Activity	Day 4 Activity	Day 5 Activity
Factual fluency (to aid fluency)	https://www.topmarks.co.uk/m aths-games/daily 10 level 3-multiplication-mixed tables $\times 2, \times 3, \times 4, \times 5, \times 8, \times 10$	https://www.topmarks.co.uk/m aths-games/daily 10 level 3 -multiplication-mixed tables $\times 2, x 3, x 4, \times 5, \times 8, \times 10$	https://www.topmarks.co.uk/m aths-games/daily10 level 3-multiplication-mixed tables $\times 2, \times 3, \times 4, \times 5, \times 8, \times 10$	https://www.topmarks.co.uk/m aths-games/daily 10 level 3-multiplication-mixed tables $\mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4, \times 5, \times 8, \times 10$	https://www.topmarks.co.uk/m aths-games/daily10 level 3 -multiplication-mixed tables $\times 2, \times 3, \times 4, \times 5, \times 8, \times 10$
Problem/activity of the day	Addition Maze - Find a way through the maze by adding. Can you find a way of adding that equals 100?	Roll a dice 6 times (or use digits $1,2,3,4,5$, 6,) to make two 3-digit numbers. Or use: https:///www.random.org/dice/ ?num=1 Create a subtraction calculation. Put the highest digit at the start of the first number in your calculation. Use the formal written method to solve (layout below). Complete 10 different formal subtraction calculations.	Use the formal method (layout below) to complete the following calculations: 1. $13 \times 3=$ 2. $25 \times 3=$ 3. $47 \times 4=$ 4. $39 \times 5=$ Finished? Well done! Write an explanation of how you solved question 1 and question 4. What is different in how you solved them?	My friend says she used this fact: $4 \times 3=$ \qquad to work out these facts: $40 \times 3=$ \qquad $30 \times 4=$ \qquad And this challenge fact: $4 \times 30 \times 10=$ \qquad Complete the calculations and explain how these facts could have been linked by my friend.	Check, prove, explain: Explain which problems can be solved using the calculation: $8 \div 2$ 1. Two bags of bread rolls have 8 rolls in each bag. How many rolls are there altogether? 2. A boat holds 2 people. How many boats are needed for 8 people? 3. I have 8 pencils and give 2 pencils to each person. How many people receive pencils? 4. I have 8 pencils and give 2 away. How many do I have left?
Resources you will need	Maze image (below) Paper and pencil	Dice (or digits above) Paper and pencil	Paper and pencil	Paper and pencil	Paper and pencil
Tips, clues or methods to help	Keep a record of the addition calculations as you go.	Draw a place value grid to keep the digits in place. Need help with calculation? Check: https://www.belleville- school.org.uk/our- learning/calculation-videos	Need help with calculation? Check: https://www.belleville-school.org.uk/our-learning/calculation-videos	Need help with calculation? Check: https://www.belleville-school.org.uk/our-learning/calculation-videos	Draw a picture or bar model for each problem and write out the calculation for each statement first.
Want to check?	Use the inverse to check	Use the inverse to check.	Use the inverse to check.	Use the inverse to check.	Check each calculation
Theme	4 operations				

See below for: addition maze, formal subtraction layout example, formal multiplication method
Additional activities below: problem solving using the 4 operations

Day 1 - Addition Maze Challenge

Day 2 - Subtraction Dice Challenge

I rolled a dice 6 times. I generated these numbers: $6,6,2,3,2,5$.

With these digits, I made this subtraction calculation.

How many calculations can you make?

In this maze there are numbers in each of the cells. You go through the maze adding all of the numbers that you pass. You may not go through each cell more than once.

Find a way through the maze in which the numbers add to exactly 100.

What is the lowest number you can make going through the maze?

What is the highest number you can make going through the maze?

Day 3 and 4: formal multiplication is laid out like this:

Additional activities:

| $\square \square \times \square=$? \quadPutting the digits 1,2 and 3 in the empty boxes, how
 many different calculations can you make? | Roger has 96 patio slabs.
 Using all of the slabs find three
 different ways that he can
 arrange the slabs to form a |
| :--- | :--- | :--- |
| rectangular patio. | |

