Year 3 Maths - week beginning 22.6.2020

Theme	Angles (Lesson 1 of 2) Acute, obtuse and right angles	Angles (Lesson 2 of 2) Making furns	Lines and Shapes (Lesson 1 of 3) Perpendicular, horizontal and vertical lines	Lines and Shapes (Lesson 2 of 3) Describing and drawing 2D shapes	Lines and Shapes (Lesson 3 of 3) Describing and making 3D shapes
Factual fluency (to aid fluency)	Match the calculation to the picture (10 questions)	4 times tables (10 questions)	8 times tables (10 questions)	Name the 2D shapes (10 questions)	Name the 3D shapes (10 questions)
Problem/ activity of the day Remember, just like in class, you can still show the depth of your knowledge LINK	(Lesson 1 resources below) MAKING LINKS: Before Easter, you learnt about angles. Where two straight lines meet at a point, they make an angle. You used a right-angle tester to find right angles. Make a new right-angle tester by folding a piece of paper in two and then folding it in two again. Look around the room and see how many right angles you can find. Today we will build on this to learn about other types of angles. Watch this video to trigger your prior learning. THINK: (support below) Are there any angles that are larger than a right angle in the letters? Are there any angles that are smaller than a right angle in the letters? Our problem is on textbook page 206. Look at it now. SEE: (model below) Our problem and the solution is shown on page 206 of your textbook. Watch the lesson video here. DO: Use what you have learnt today to solve: Part 1: Questions 1-6 on pages 207-209 of your textbook. Check your answers before moving onto: Part 2: Workbook, Chapter 12, Worksheet 6, Pages 151-154	(Lesson 2 resources below) MAKING LINKS: Yesterday, you learnt that an acute angle is smaller than a right angle, and an obtuse angle is larger than a right angle. Today we are going to use this learning to make and describe different types of turns. THINK: (support below) In a game, you need to move your character from place to place while avoiding the monsters. How does your character turn to face the mountains, the tunnel and the sea? Our problem is on textbook page 210. Look at it now. SEE: (model below) Our problem and the solution is shown on pages 210 and 211 of your textbook. Watch the lesson video here. DO: Use what you have learnt today to solve: Part 1: Questions a, b and c on page 213 of your textbook. Check your answers before moving onto: Part 2: Workbook, Chapter 12, Worksheet 7, Pages 155-157.	(Lesson 3 resources below) MAKING LINKS: Before Easter, you learnt about perpendicular and parallel lines. You also learnt about vertical and horizontal lines. Today we will practise this learning. THINK: (support below) The pictures are rectangular in shape and are hanging upright on the wall. What can you say about the sides of the rectangles? Our problem is on textbook page 222. Look at it now. SEE: (model below) Our problem and the solution is shown on pages 222-223 of your textbook. Watch the lesson video here DO: Use what you have learnt today to solve: Part 1: Question 2 and 3 on page 218 of your textbook, Question 2 and 3 on page 221 of your textbook, Question 2 on page 224 of your textbook. Check your answers before moving onto: Part 2: Workbook, Chapter 13: Worksheet 1, Question 1, 2a and 2b (pages 161-162) Worksheet 2, Question 1, 2a and 3a (pages 165-167) Worksheet 3, Question 1 and 2 (page 169)	(Lesson 4 resources below) MAKING LINKS: Yesterday, you practised recognising perpendicular, parallel, horizontal and vertical lines. In year 2, you learnt to recognise and describe 2D shapes using the language of sides and vertices. Today, we will describe 2D shapes using our knowledge of angles and lines. THINK: (support below) How can we describe the shape? Our problem is on textbook page 225. Look at it now. SEE: (model below) Our problem and the solution is shown on pages 225-227 of your textbook. Watch the lesson video here DO: Use what you have learnt today to solve: Part 1: Questions 1, 2 and 3 on page 227 of your textbook. Check your answers before moving onto: Part 2: Workbook, Chapter 13, Worksheet 4, Pages 171-173 and Worksheet 5, Question 1, Page 174.	(Lesson 5 resources below) MAKING LINKS: Yesterday, you learnt to describe and draw two-dimensional shapes. In year 2, you learnt to recognise and describe 3D shapes using the language of faces, edges and vertices. Today, we will describe 3D shapes using our knowledge of lines. Watch this video to trigger your prior learning. THINK: (support below) The edges of the box are lines. Describe the edges. Our problem is on textbook page 236. Look at it now. SEE: (model below) Our problem and the solution is shown on pages 236-237 of your textbook. Watch the lesson video here DO: Use what you have learnt today to solve: Part 1: Questions 1 and 2 on page 238 of your textbook. Check your answers before moving onto: Part 2: Workbook, Chapter 13, Worksheet 6, Question 1, Page 176; Worksheet 7, Question 1, Page 178; and Worksheet 8, Questions 1 and 2, Pages 180-181.
Methods, tips, clues \& checks	Day 1 resources and answers below	Day 2 resources and answers below	Day 3 resources and answers below	Day 4 resources and answers below	Day 5 resources and answers below

Quality First Education Trust

DAY 1 RESOURCES:

Quality First Education Trust

Before you start today's think task, watch this video to trigger your prior learning on right angles, and make a right-angle tester from a piece of paper to use in your lessons this week.

THINK:

Look at page 206 of your textbook now. Be sure to read all of the information as many times as you need to understand.

Are there any angles that are larger than a right angle in the letters?
Are there any angles that are smaller than a right angle in the letters?

DO:

Part 1:
Complete questions 1-6 on pages 207-209 of your textbook. Use your right-angle tester to help you.
If the right-angle tester fits perfectly into the angle made where the two lines meet, then the angle is a right angle.

If the angle is smaller than the right-angle tester then the angle is an acute angle.

If the angle is larger than the right-angle tester, thanthe angle is an obtuse angle.

Check your answers below.

Part 2:

Complete worksheet 6 on pages 151-154 of your workbook.

SEE:

Check the solution on page 206 of your textbook. Watch the lesson video here.

These are right angles.
Right angles are 90°.

An acute angle is smaller than a right angle. These are acute angles.

These are acute angles too. They are smaller than 90°.

These are larger than a right angle.
We call them obtuse angles.
Obtuse angles are larger than 90°.

THINK:

Look at page 210 of your textbook now. Be sure to read all of the information as many times as you need to understand.

In a game, you need to move your character from place to place while avoiding the monsters.

How does your character turn to face the mountains, the tunnel and the sea?

DO:

Part 1:

Complete questions a, b and c on page 213 of your textbook. Place an object on top of the cube at the start of each question. Turn the object to match the cube at the end. How did you turn the object?
Check your answers below.

Part 2:

Complete worksheet 7 on pages 155-157 of your workbook. As with part 1, place an object on top of each arrow and on top of Emma and turn the object. How did you turn them?

clockwise

anti-clockwise

SEE:

Check the solution on pages 210-211 of your textbook.
Watch the lesson video here.

To turn to face the sea, the character needs to turn 3 right angles clockwise.
This is three-quarters of a turn. What if he turned anti-clockwise? What turn would he need to make then?

If the character turns 4 right angles, he will face the same direction he started in.
This is a full turn.
4 right angles $=1$ full turn
Does it matter which direction he turns in?

THINK:

Look at page 222 of your textbook now. Be sure to read all of the information as many times as you need to understand.

The pictures are rectangular in shape and are hanging upright on the wall.
What can you say about the sides of the rectangles?

DO:

Part 1:

Complete:

- Questions 2 and 3 on page 218 of your textbook
- Questions 2 and 3 on page 221 of your textbook
- Question 2 on page 224 of your textbook

Check your answers before moving onto:

Part 2:

Complete the following questions in chapter 13 of your workbook:

- Worksheet 1, Questions 1, 2a and 2b (pages 161-162)
- Worksheet 2, Questions 1, 2a and 3a (pages 165-167)
- Worksheet 3, Questions 1 and 2 (page 169)

Top tips:

- Use your right-angle tester to see if lines are perpendicular.
- Colour vertical lines in one colour and horizontal lines in another colour to help you identify them.

SEE:

Check the solution on pages 222-223 of your textbook.
Watch the lesson video here.

Two straight lines that meet at a right angle are called perpendicular lines.

Line $B C$ is perpendicular to the floor. Line $A D$ is also perpendicular to the floor. Line $B C$ is also perpendicular to line $A B$ and line $D C$.

Two lines that do not meet at a point and do not make an angle, no matter how long they are drawn, are called parallel lines.

Line $A D$ is parallel to line $B C$.
Line $A B$ is parallel to line $D C$ and the floor.
vertical line

Lines that are perpendicular to the floor are called vertical lines. Vertical lines are parallel to each other.

Lines $A D$ and $B C$ are both vertical lines.
Lines that are parallel to the floor are called horizontal lines.

Lines $A B$ and $D C$ are both horizontal lines.

THINK:

Look at page 225 of your textbook now. Be sure to read all of the information as many times as you need to understand.

How can we describe the shape?

A right-angle tester will be important for today's lesson.

DO:

Part 1:

Complete questions 1,2 and 3 on page 227 of your textbook.
Star words to use: vertices, angles (right angle, acute and obtuse), sides (perpendicular and parallel), length (cm centimetres)

Check your answers below.

Part 2:

Complete worksheet 4 on pages 171-173 of your workbook and question 1 of worksheet 5 on page 174 of your workbook.

Remember to use a ruler and a right-angle tester.
Top tips for measuring length with a ruler:
Check you are using the side of the ruler showing cm (centimetres).

- Make sure you start at 0cm.
- Line the ruler up carefully.

SEE:

Check the solution on pages 225-227 of your textbook.
Watch the lesson video here.

Angles of the shape

- There are 4 angles.
- I used letters to name the angles to help me describe them.
- Angles a and b are right angles. I checked with my right-angle tester.
- Angle c is an acute angle because it is smaller than a right angle.
- Angle d is an obtuse angle because it is larger than a right angle.
- I can also say that the shape has 4 vertices (where two straight sides meet).

Images are not to scale. Please refer to the images in the textbook to measure the angles.

Sides of the shape

- There are 4 sides so the shape is a quadrilateral.
- I used letters to name the sides to help me describe them.
- $\quad F R$ is perpendicular to $F O$.
- FR is also perpendicular to RU.
- FO is parallel to RU.

Lengths of the sides

- FO is about 5 cm
- OU is about 5 cm
- $F R$ is about 4 cm
- RU is about 8 cm

Images are not to scale. Please refer to the images and the ruler drawn in the textbook to measure the sides.

DAY 5 RESOURCES:

Before you start today's think task, watch this video to trigger your prior learning about 3D shapes.

THINK:

Look at page 236 of your textbook. Be sure to read all of the information as many times as you need to understand.

The edges of the box are lines.
Describe the edges.

DO:

Part 1:

Complete questions 1 and 2 on page 238 of your textbook.
You might find it helpful to make the objects using cocktail sticks and sellotape or blu tac.

Check your answers below.

Part 2:

Complete the following questions in chapter 13 of your workbook:

- Question 1 of worksheet 6, page 176
- Question 1 of worksheet 7, page 178
- Questions 1 and 2 of worksheet 8, pages 180-181

Find objects in your house that match the shape in the question. Use these objects to help you describe the shape. Example: a box for the cuboid and a tent, a pencil case or a bar for the prism.

SEE:

Check the solution on pages 236-237 of your textbook.
Watch the lesson video here.

An edge is
where two faces meet.

A cuboid has 12 edges.

These two lines are perpendicular.
Are there more pairs of perpendicular lines?

These lines are parallel. Look for other pairs of parallel lines.

This is a horizontal line.
How many horizontal lines does the box have?

ANSWERS - part 1:

Quality First Education Trust

ANSWERS - part 2:

	Day 2	Day 3		
Q1. a) acute, b) obtuse, c) obtuse, d) right angle, e) acute, f) obtuse Q2. No angle: C No obtuse angle: V, F, E, H, Z, N, W 1 obtuse angle: Y 2 obtuse angles: A, X, K Q3. a) 2 , b) 5, c) 2 , d) 1 , e) 2 , f) 0 Q4. a) acute angle, b) obtuse angle	Q1. a) 3 right angle turns anticlockwise b) 2 right angle turns clockwise c) 1 right angle turn anticlockwise Q2. a) shopping mall b) church c) 3 right angle turns anticlockwise and 1 right angle turn clockwise d) park e) church f) park	Worksheet 1 : Q1.c, d and e are perpendicular Q2. a) $A B$ is perpendicular to BC b) $P Q$ is perpendicular to $Q R$, $Q R$ is perpendicular to $R S$ Worksheet 2: Q1. c and f are parallel Q2. a) $E F$ is parallel to $G H$ Q3. a) $A B$ is parallel to $D C, A D$ is parallel to $B C$ Worksheet 3: Send your answers to your teacher for checking on Seesaw.	Worksheet 4: Q1. a) There are 4 angles. Each angle is a right angle. b) There are 3 angles. There is 1 right angle. There are 2 acute angles. c) There are 4 angles. Angles b and d are acute. Angles a and c are obtuse. Q2. a) There are 4 sides. The perpendicular sides are $A B$ and $B C, A D$ and $D C$, or $B C$ and $D C, A B$ and $A D$. The parallel sides are $A B$ and $D C$, $A D$ and $B C$. b) The shape has 6 sides. EF is parallel to IH . JE is parallel to HG. Jl is parallel to FG . Q3. a) $A B$ is about $5 \mathrm{~cm}, A C$ is about 5 cm and $B C$ is about 6 cm . b) EF is about 5 cm , EH is about $4 \mathrm{~cm}, \mathrm{HG}$ is about 6 cm and FG is about 4 cm . c) KL is about $7 \mathrm{~cm}, \mathrm{KN}$ is about 3 cm . KN and LM have the same length. KL and NM have the same length. Worksheet 5: Question 1: Answers may vary.	Worksheet 6: Q1. a) matches to the pyramid, b) matches to the cube, c) matches to the prism, d) matches to the cuboid Worksheet 7: Q1. cone, cube, cylinder, pyramid, sphere, prism, cuboid Worksheet 8: Q1. a) Horizontal: BC, AD, FG, EH, AB, EF, DC, HG Vertical: AE, BF, DH, CG b) $A B$ is perpendicular to $B F$. (Answers may vary) C) $A B$ is parallel to $D C$. (Answers may vary) Q2. a) PQ and ST, PR and SU, PS and RU, QT and RU, QR and TU, PS and QT b) PR, PS, QT c) 9

