Year 3 maths - Summer 2 Week beginning: 1.6.20

Theme	Fractions Lesson 11 Finding Equivalent Fractions	Fractions Lesson 12 Finding the Simplest Fractions	Fractions Lesson 13 Comparing Fractions	Fractions Lesson 14 Comparing Fractions	Fractions Lesson 15 Adding Fractions
Factual fluency (to aid fluency)	Can you identify unit fractions on a number line?	Can you identify fractions on a number line?	Write the correct amount that the fraction bar is shaded in	Shade in the fraction of the bar and write the fraction	Are the division facts for 2,5 and 10 true or false?
Problem/ activity of the day Remember, just like in class, you can still show the depth of your knowledge LINK	MAKING LINKS: Last week we learnt that some fractions can be equivalent. Today we are going to continue practising this new learning. THINK: (support below) Can you help me with this problem? You can use a strip of paper, or a real life object like a chocolate bar to help you. How can we write $\frac{2}{5}$ as tenths? How many other ways can you write it? SEE: (model below) Watch lesson video here. DO: Use what you have learnt today to answer the questions below.	MAKING LINKS: Yesterday we continued practising finding equivalent fractions. THINK: (support below) Can you help me with this problem? Mr Marlow challenged his year 3 class. "Can you write an equivalent fraction to $\frac{8}{12}$ using the smallest numbers possible?" he asked. "Find the fraction in its simplest form!" The Year 3s were not sure what to do next.... SEE: (model below) Watch lesson video here. DO: Use what you have learnt today to answer the questions below.	(Lesson 3 resources below) MAKING LINKS: Yesterday we were finding fractions in their simplest forms. THINK: (support below) With a piece of paper, cut it into a square. You may cut, fold or write on the paper to help you. Ahmed and Gemma each have a paper square of the same size. Ahmed cuts the square into 2 equal parts and keeps 1 part. Gemma cuts the square into 4 equal parts and keeps 1 part. Who keeps a bigger part, Ahmed or Gemma? Ahmed cuts his square into 2 equal parts. Gemma cuts her square into 4 equal parts. SEE: (model below) Watch lesson video here. DO: Use what you have learnt today to answer the questions below.	(Lesson 4 resources below) MAKING LINKS: Yesterday we were comparing unit fractions. THINK: (support below) Look at this delicious bar of chocolate. How many pieces are there altogether? Gemma takes 3 pieces. Ahmed takes 5 pieces. Who takes more? Are there other ways for Ahmed to get more pieces than Gemma? SEE: (model below) Watch lesson video here. DO: Use what you have learnt today to answer the questions below.	(Lesson 5 resources below) MAKING LINKS: Yesterday we compared fractions with the same denominator. THINK: (support below) Can you help me with this problem? Charles took $\frac{1}{6}$ of the berries in the box. Ruby took $\frac{3}{6}$ of the berries in the box. What fraction of the berries did Charles and Ruby take altogether? Give the answer in its simplest form. SEE: (model below) Watch lesson video here. DO: Use what you have learnt today to answer the questions below.
Methods, tips, clues \& checks	Day 1 resources and answers (below)	Day 2 resources and answers (below)	Day 3 resources and answers (below)	Day 4 resources and answers (below)	Day 5 resources and answers (below)

THINK:

How can we write $\frac{2}{5}$ as tenths? How many other ways can you write it as?
You can use a strip of paper, or a real life object like a chocolate bar to help you.

SEE:

See video

The purple is $\frac{2}{5}$ whilst the blue is $\frac{4}{10}$. They are equivalent.

Rather than drawing them out, you can use the method below to find equivalent fraction. Multiply the numerator and the denominator by the same amount to find an equivalent fraction.
You could also write it as...

$$
\frac{2}{5}=\frac{4}{10}=\frac{8}{20}=\frac{16}{40} \ldots
$$

DO: Find the equivalent fractions and explain your answers.
a)

6)

b)

$$
\begin{aligned}
& \frac{2}{3}=\frac{}{9} \\
& \frac{4}{5}=\frac{}{15}
\end{aligned}
$$

Deepening:

Max says there are infinite ways of saying $\frac{1}{2}$. Is he correct? Explain your answer using sentences and diagrams.

We say that $\frac{2}{3}$ is the simplest form of $\frac{8}{12}$. It is equivalent, and the
numerator and the denominator are both the smallest possible number.

DO: Write each fraction in its simplest form. Show your working as shown in the example.

Simplifying Fractions

Examples:

$\frac{18}{20}=$

$$
\frac{14}{24}=
$$

$$
\frac{3}{30}=
$$

$$
\frac{4}{40}=
$$

$$
\frac{10}{45}=
$$

$$
\frac{2}{6}=
$$

$$
\frac{5}{15}=
$$

$$
\frac{45}{50}=
$$

Deepening: Can a fraction be made simpler if its numerator is 1 ? Explain your answer.

Quality First Education Trust

DAY 3 RESOURCES

THINK:

With a piece of paper, cut it into a square. You may cut, fold or write on the paper to help you.
Ahmed and Gemma each have a paper square of the same size.
Ahmed cuts the square into 2 equal parts and keeps 1 part.
Gemma cuts the square into 4 equal parts and keeps 1 part.
Who keeps a bigger part, Ahmed or Gemma?
Which is greater, $\frac{1}{2}$ or $\frac{1}{4}$?

Ahmed cuts his square into 2 equal parts and keeps 1 part.

Gemma cuts her square into 4 equal parts and keeps 1 part.
art.

$\frac{1}{2}$ is greater than $\frac{1}{4}$

SEE:

See support video

Ahmed cuts his square into 2 equal parts.

Gemma cuts her square into 4 equal parts.

$\frac{1}{2}=\frac{2}{4}$, so $\frac{1}{2}$ is greater than $\frac{1}{4}$

The parts Gemma gets are smaller.

Ahmed's piece

Gemma's piece

DO:

1. Shade in the amount of the fraction and write which fraction is greater.

Which number is greater?

Which number is smaller?

2. Compare the fractions using $=,<$ or $>$.
(a) $\frac{1}{2} \square \frac{1}{10}$
(b) $\frac{1}{2} \square \frac{1}{3}$
(c) $\frac{1}{10} \square \frac{1}{3}$
3. Explain why $\frac{1}{3}$ is greater than $\frac{1}{7}$ using diagrams to support your explanation.

Deepening: Maria says that $\frac{3}{3}$ is greater than 1 . Tom says they are equal. Who is correct? Why? Explain your answer using diagrams as well as words.

Quality First Education Trust

DAY 4 RESOURCES

THINK:

Look at this delicious bar of chocolate. How many pieces are there altogether?

Gemma takes $\mathbf{3}$ pieces.
Ahmed takes $\mathbf{5}$ pieces.
Ahmed takes 5 pie
Who takes more?
Are there other ways fo
Ahmed to get more pieces
than Gemma?
$\frac{5}{8}$ is more than $\frac{3}{8}$
$\frac{3}{8}$ is less than $\frac{5}{8}$
Ahmed gets more pieces than Gemma.

We can show this information clearly using a bar model.

Ahmed

SEE:

support video

Are other ways for Ahmed to get more pieces than Gemma? What if Ahmed gets 7 pieces? What would the fraction be for Ahmed? What about Gemma?

What if both Ahmed and Gemma take 4 pieces each? Does Ahmed get more than Gemma?

What if Ahmed gets 6 pieces? What would that fraction be for Ahmed? What about Gemma?

We can simplify this by dividing the numerator and denominator by the same number: 2.

We can also say: $\frac{3}{4}$ is more than $\frac{1}{4}$

$$
\frac{3}{4}>\frac{1}{4}
$$

DO:

1. Shade in the amount of the fraction and write which fraction is greater.

Which number is greater?

Which number is smaller?

2. Compare the fractions using $=,<$ or $>$.
(a) $\frac{2}{7} \square \frac{5}{7}$

(b) | $\frac{4}{5}$ |
| :--- |

(c) $\frac{8}{11} \square \frac{7}{11}$
(d) $\frac{2}{7} \square \frac{7}{2}$
3. Explain why $\frac{3}{5}$ is greater than $\frac{2}{5}$ using diagrams to support your explanation.

Deepening:

Create your own word problems for the THINK, e.g. Rebecca and her friend shared a large sandwich. They cut it into 6 equal pieces. Rebecca ate 1 piece and her friend ate 5 pieces. Who ate more? How much of the sandwich was left over?

DAY 5 RESOURCES:

THINK:
 Can you help me with this problem? Charles took $\frac{1}{6}$ of the berries in the
 box. Ruby took $\frac{3}{6}$ of the berries in the box. What fraction of the berries did Charles and Ruby take altogether?
 Give the answer in its simplest form.

SEE:See video

Charles took $\frac{1}{6}$ of the berries in the box.

Ruby took $\frac{3}{6}$ of the berries in the box.

1 sixth +3 sixths $=4$ sixths

$$
\frac{1}{6}+\frac{3}{6}=\frac{4}{6}
$$

Charles and Ruby took $\frac{4}{6}$ of the berries.

$$
\frac{1}{6}+\frac{3}{6}=\frac{4}{6}
$$

$$
\frac{4}{6}=\frac{2}{3}
$$

So, $\frac{1}{6}+\frac{3}{6}=\frac{2}{3}$

1. Add and fill in the blanks. Write each fraction in its simplest form.

Shade the bars to help you.
a) \qquad

$$
\frac{2}{3}+\frac{1}{3}=
$$

b)

$\frac{4}{8}+\frac{2}{8}=$
2. Add and write each fraction in its simplest form. You can always draw a bar to help you.
a) $\frac{2}{5}+\frac{3}{5}=$
b) $\frac{7}{12}+\frac{1}{12}=$
C) $\frac{2}{8}+\frac{2}{8}=$
d) $\frac{2}{6}+\frac{2}{6}=$

Deepening: How do you know when a fraction can't be simplified? Explain using diagrams as well as words.

Answers:

