Year 3 maths - Summer 2 Week beginning: 1.6.20

Theme	Fractions Lesson 11 Finding Equivalent Fractions	Fractions Lesson 12 Finding the Simplest Fractions	Fractions Lesson 13 Comparing Fractions	Fractions Lesson 14 Comparing Fractions	Fractions Lesson 15 Adding Fractions
Factual fluency (to aid fluency)	Can you identify unit fractions on a number line?	Can you identify fractions on a number line?	Write the correct amount that the fraction bar is shaded in	Shade in the fraction of the bar and write the fraction	Are the division facts for 2,5 and 10 true or false?
Problem/ activity of the day Remember, just like in class, you can still show the depth of your knowledge LINK	MAKING LINKS: Last week we learnt that some fractions can be equivalent. Today we are going to continue practising this new learning. THINK: (support below) Can you help me with this problem? You can use a strip of paper, or a real life object like a chocolate bar to help you. How can we write $\frac{2}{5}$ as tenths? How many other ways can you write it? SEE: (model below) Watch lesson video here. DO: Use what you have learnt today to answer the questions below.	MAKING LINKS: Yesterday we continued practising finding equivalent fractions. THINK: (support below) Can you help me with this problem? Mr Marlow challenged his year 3 class. "Can you write an equivalent fraction to $\frac{8}{12}$ using the smallest numbers possible?" he asked. "Find the fraction in its simplest form!" The Year 3s were not sure what to do next.... SEE: (model below) Watch lesson video here. DO: Use what you have learnt today to answer the questions below.	(Lesson 3 resources below) MAKING LINKS: Yesterday we were finding fractions in their simplest forms. THINK: (support below) With a piece of paper, cut it into a square. You may cut, fold or write on the paper to help you. Ahmed and Gemma each have a paper square of the same size. Ahmed cuts the square into 2 equal parts and keeps 1 part. Gemma cuts the square into 4 equal parts and keeps 1 part. Who keeps a bigger part, Ahmed or Gemma? Ahmed cuts his square into 2 equal parts. Gemma cuts her square into 4 equal parts. SEE: (model below) Watch lesson video here. DO: Use what you have learnt today to answer the questions below.	(Lesson 4 resources below) MAKING LINKS: Yesterday we were comparing unit fractions. THINK: (support below) Look at this delicious bar of chocolate. How many pieces are there altogether? Gemma takes 3 pieces. Ahmed takes 5 pieces. Who takes more? Are there other ways for Ahmed to get more pieces than Gemma? SEE: (model below) Watch lesson video here. DO: Use what you have learnt today to answer the questions below.	(Lesson 5 resources below) MAKING LINKS: Yesterday we compared fractions with the same denominator. THINK: (support below) Can you help me with this problem? Charles took $\frac{1}{6}$ of the berries in the box. Ruby took $\frac{3}{6}$ of the berries in the box. What fraction of the berries did Charles and Ruby take altogether? Give the answer in its simplest form. SEE: (model below) Watch lesson video here. DO: Use what you have learnt today to answer the questions below.
Methods, tips, clues \& checks	Day 1 resources and answers (below)	Day 2 resources and answers (below)	Day 3 resources and answers (below)	Day 4 resources and answers (below)	Day 5 resources and answers (below)

THINK:

How can we write $\frac{2}{5}$ as tenths? How many other ways can you write it as? You can use a strip of paper, or a real life object like a chocolate bar to help you.
SEE:
See video
Method 1: Below I have a bar showing $\frac{2}{5}$ shaded in purple.

Here I have drawn the same bar, but I have split it into 10 equal parts or tenths. I have shaded the same amount of the bar in blue. I have shaded four out of the ten equal pieces. The purple is $\frac{2}{5}$ whilst the blue is $\frac{4}{10}$. They are equivalent.

DO: Find the equivalent fractions and explain your answers.
a)

6)

b)

Method 2: Multiply the numerator and the denominator by the same amount to find an equivalent fraction.

c)

Quality First Education Trust

Mr Marlow challenged his year 3 class.
"Can you write an equivalent fraction
to $\frac{8}{12}$ using the smallest numbers
possible?" he asked. "Find the fraction in its simplest form!"

The Year 3s were not sure what to do next....

We say that $\frac{2}{3}$ is the simplest form of $\frac{8}{12}$. It is equivalent, and the numerator and the denominator are both the smallest possible number.

DO: Write each fraction in its simplest form. Show your working as shown in the example.
Step 1: Think what times table the numerator and denominator are both in. Step 2: Divide the numerator and denominator by this number.
Step 3: Think what times table the numerator and denominator are both in now. If there is one, divide by this number. If not, the fraction is already in its simplest form.

Examples:

Step 1:20 and 50 are both in the 5 times tables.

$$
\text { Step 2: } 20 \div 5=4 \quad 50 \div 5=10
$$

Step 3: Now I have $\frac{4}{10} .4$ and 10 are both in the 2 times tables. $4 \div 2=2$ $10 \div 2=5$
There is no number that both 2 and 5 can be divided by so 1 know this fraction is now in its simplest form.

DAY 3 RESOURCES

THINK:

With a piece of paper, cut it into a square. You may cut, fold or write on the paper to help you.
Ahmed and Gemma each have a paper square of the same size.
Ahmed cuts the square into 2 equal parts and keeps 1 part.
Gemma cuts the square into 4 equal parts and keeps 1 part.
Who keeps a bigger part, Ahmed or Gemma?
Which is greater, $\frac{1}{2}$ or $\frac{1}{4}$?

Ahmed cuts his square into 2 equal parts and keeps 1 part.

Gemma cuts her square into 4 equal parts and keeps 1 part.
art.

$\frac{1}{2}$ is greater than $\frac{1}{4}$

SEE:
 See support video

Ahmed cuts his square into 2 equal parts.

The parts Gemma gets are smaller.

Ahmed's piece

Gemma's piece

Gemma cuts her square into 4 equal parts.

$\frac{1}{2}=\frac{2}{4}$, so $\frac{1}{2}$ is greater than $\frac{1}{4}$

So, $\frac{1}{4}$ is less than a $\frac{1}{2}$
$\frac{1}{2}$ is greater than $\frac{1}{4}$

DO:

1. Shade in the amount of the fraction and write which fraction is greater.

Which number is greater?

Which number is smaller?

2. Compare the fractions using $=$, < or $>$. Draw and shade in your own bars to help you. Remember each of the parts in your bars need to be equal.
(a) $\frac{1}{2} \frac{1}{10} \quad \begin{array}{r}\text { Remember: }\end{array} \quad \begin{array}{r}\text { means less than (e.g. } 1<2) \\ \\ >\end{array}$
(b) $\frac{1}{2} \square \frac{1}{3}$
(c) $\frac{1}{10} \square \frac{1}{3}$
3. Explain why $\frac{1}{3}$ is greater than $\frac{1}{7}$ using diagrams to support your explanation.

DAY 4 RESOURCES

THINK:

Look at this delicious bar of chocolate. How many pieces are there altogether?

Gemma takes $\mathbf{3}$ pieces
Ahmed takes 5 pieces. Ahmed takes 5 pieces. Who takes more?

$$
\begin{aligned}
& \frac{5}{8} \text { is more than } \frac{3}{8} \\
& \frac{3}{8} \text { is less than } \frac{5}{8}
\end{aligned}
$$

Ahmed gets more pieces than Gemma.

Are there other ways for Ahmed to get more pieces than Gemma?

SEE:

support video

Are other ways for Ahmed to get more pieces than Gemma? What if Ahmed gets 7 pieces? What would the fraction be for Ahmed? What about Gemma?

What if both Ahmed and Gemma take 4 pieces each? Does Ahmed get more than Gemma?

What if Ahmed gets 6 pieces? What would that fraction be for Ahmed? What about Gemma?

We can simplify this by dividing the numerator and denominator by the same number: 2.

We can also say: $\frac{3}{4}$ is more than $\frac{1}{4}$

$$
\frac{3}{4}>\frac{1}{4}
$$

 \(\frac{7}{8}\) is more than \(\frac{1}{8}\)

$$
\frac{1}{8} \text { is less than } \frac{7}{8}
$$

$$
\frac{7}{8}>\frac{1}{8} \quad \frac{1}{8}<\frac{7}{8}
$$

Both get $\frac{4}{8}$, therefore they get the
same amount. Can you write $\frac{4}{8}$ in its simplest form? Look at Day 2's learning to help you.

$$
\begin{aligned}
& \frac{6}{8} \text { is more than } \frac{2}{8} \\
& \frac{2}{8} \text { is less than } \frac{6}{8} \\
& \frac{6}{8}>\frac{2}{8} \quad \frac{2}{8}<\frac{6}{8}
\end{aligned}
$$

$$
\because \div
$$

DO:

1. Shade in the amount of the fraction and write which fraction is greater.

Which number is greater?

$\frac{1}{6}$						
$\frac{5}{6}$						

Which number is smaller?

2. Compare the fractions using $=,<$ or $>$. Draw and shade in your own bars to help you. Remember each of the parts in your bars need to be equal.
(a) $\frac{2}{7} \quad \frac{5}{7}$

Remember: < means less than (e.g. $1<2$)
$>$ means greater than (e.g. $2>1$)
(b) $\frac{4}{5} \square \frac{3}{5}$
(c) $\frac{8}{11} \square \frac{7}{11}$
(d) $\frac{2}{7}$

Hint: Is $\frac{7}{2}$ more or less than one whole? How many bars do you need to draw to show $\frac{7}{2}$?
3. Explain why $\frac{3}{5}$ is greater than $\frac{2}{5}$ using diagrams to support your explanation.

DAY 5 RESOURCES:

THINK:

Charles took $\frac{1}{6}$ of the berries in the box. Ruby
took $\frac{3}{6}$ of the berries in the box. What fraction of
the berries did Charles and Ruby take
altogether?
Give the answer in its simplest form.

SEE: See video

Charles took $\frac{1}{6}$ of the berries in the box.

Ruby took $\frac{3}{6}$ of the berries in the box.
1 sixth +3 sixths $=4$ sixths $\quad \frac{1}{6}+\frac{3}{6}=\frac{4}{6}$
Charles and Ruby took $\frac{4}{6}$ of the berries.

To write $\frac{4}{6}$ in its simplest form, we could draw our bar model again but this time make two of the parts into one part. We have put two sixths together to make one third. Now we have 3 equal parts and 2 of them are shaded. We can see that the shaded part is still the same. So $\frac{2}{3}$ is the same as $\frac{4}{6}$.
$\div 2$ \rightarrow

$$
\text { So, } \frac{1}{6}+\frac{3}{6}=\frac{2}{3}
$$

1. Add and fill in the blanks. Write each fraction in its simplest form.

Shade the bars to help you.
a) \qquad
$\frac{2}{3}+\frac{1}{3}=$
b) \qquad

$$
\frac{4}{8}+\frac{2}{8}=
$$

2. Add and write each fraction in its simplest form. You can always draw a bar to help you.
a) $\frac{2}{5}+\frac{3}{5}=$
b) $\frac{7}{12}+\frac{1}{12}=$
C) $\frac{2}{8}+\frac{2}{8}=$
d) $\frac{2}{6}+\frac{2}{6}=$

Answers:

Quality First Education Trus \dagger

