Year 2 maths - Summer 2 Week beginning: 6.7.20

YOU WILL NEED TO USE YOUR MATHS WORKBOOK THIS WEEK (but not on Friday)

Theme	Volume Lesson 1 (of 8) Comparing volume	Volume Lesson 2 (of 8) Comparing volume	Volume Lesson 3 (of 8) Measuring volume in litres	Volume Lesson 4 (of 8) Measuring volume in millilitres	Volume Lesson 5 (of 8) Measuring volume in millilitres NO WORKBOOK TODAY!
Factual fluency (to aid fluency)	Type the missing number in the sequence (complete 10 questions)	Counting by twos, fives and $\frac{\text { tens }}{\text { (complete } 10 \text { questions) }}$	$\begin{aligned} & \text { Counting forward and } \\ & \text { backward } \\ & \text { (complete } 10 \text { questions) } \end{aligned}$	Multiplication sentences (complete 10 questions)	Relate multiplication and division for equal groups (complete 10 questions)
Problem/ activity of the day Remember, just like in class, you can still show the depth of your knowledge LINK	(Lesson 1 resources below) MAKING LINKS: In Year 1, you learnt about comparing volume and capacity, using terms such as 'more than' and 'less than'. Remind yourself of volume and capacity by following this link and scrolling down to the learn section. Scroll through the slides for 'capacity' and 'which holds more'. THINK: (support below) Can you help me with this problem? Which container has the most volume of water? Our problem is on textbook page 180. Look at it now. SEE: (model below) The problem and the solution are shown on pages 180 and 181 in your textbook. Watch the lesson video here. DO: Use what you have learnt today to solve: Part 1: Questions 1 and 2 from textbook page 182. Check your answers before moving onto: Part 2: Workbook, Chapter 15, Worksheet 1, pages 155-156.	(Lesson 2 resources below) MAKING LINKS: Yesterday, you learnt how to compare and order volume and record the results using $>$, < and $=$. THINK: (support below) Can you help me with this problem? Which container has the most water? Our problem is on textbook page 184. Look at it now. SEE: (model below) The problem and the solution are shown on pages 184 and 185 in your textbook. Watch the lesson video here. DO: Use what you have learnt today to solve: Part 1: Questions a, b and c from textbook page 186. Check your answers before moving onto: Part 2: Workbook, Chapter 15, Worksheet 2, pages 157-158.	(Lesson 3 resources below) MAKING LINKS: Yesterday, you learnt to compare the volume of water using non-standard units of measurement. THINK: Can you help me with this problem? My friend bought these from the shop. How much liquid is in each container? Our problem is on textbook page 187. Look at it now. SEE: (model below) The problem and the solution are shown on pages 187 and 188 in your textbook. Watch the lesson video here. DO: Use what you have learnt today to solve: Part 1: Questions 1, 2 and 3 from textbook page 190. Check your answers before moving onto: Part 2: Workbook, Chapter 15, Worksheet 3, pages 159-161.	(Lesson 4 resources below) MAKING LINKS: Yesterday we learnt to measure and compare capacity. We used litres and millilitres as our unit of measurement. THINK:(support below) Can you help me with this problem? My friend collected some soap containers from different hotels. How much liquid is in each container? How many bottles can II of water fill? Our problem is on textbook page 191. Look at it now. SEE: (model below) The problem and the solution are shown on pages 191 and 192 in your textbook. Watch the lesson video here. DO: Use what you have learnt today to solve: Part 1: Questions a, b, c, d, e, f and g from textbook page 193. Part 2: Workbook, Chapter 15, Worksheet 4, page 162	(Lesson 5 resources below) MAKING LINKS: Yesterday we learnt to measure volume in millilitres. THINK:(support below) Can you help me with this problem? My friend pours a mug full of water into a beaker. Then she adds another cup full of water to the same beaker. Next she fills a different mug with water from the beaker. What is the volume of each container? SEE: (model below) Look at the model below to see how to solve this problem. DO: Use what you have learnt today to solve the problems below.
Methods, tips, clues \& checks	Day 1 resources and answers (below)	Day 2 resources and answers (below)	Day 3 resources and answers (below)	Day 4 resources and answers (below)	Day 5 resources and answers (below)

[^0]THINK: Can you help me with this problem? Which container has the most volume of water?

Look at page 180 of your textbook pages now. Be sure to read all of the information as many times as you need to understand.
Remember: Volume tells us how much is currently in the container.

DO:

Part 1:
Complete questions 1 and 2 from the textbook page 182.
Check your answers, below.

Part 2:

Now complete pages 155 and 156 of your workbook.
Check your answers, below.

Top tip: Use the alligator less than, greater than and equal to images to support you with the worksheets.

SEE: Optional video link.

A good way to check the volume in these containers is to pour the water into 3 identical measuring jugs or cups. We will then be able to tell the difference between the 3 containers because they are in identical jugs. We then look at the water levels to compare the volume.

The volume of water in Container A is less than the volume of water in Container B.

The volume of water in Container B is greater than the volume of water in Container C .

Container A has the least amount of water.
We write

Container B has the greatest amount of water.

DAY 2 RESOURCES:

THINK: Can you help me with this problem? Which container has the most water?

Look at page 184 of your textbook pages now. Be sure to read all of the information as many times as you need to understand.

DO:

Part 1:
Complete questions a, b and c from the textbook page 186.
Check your answers, below.

Part 2:

Now complete pages 157 and 158 of your workbook.
Check your answers, below.

SEE: Optional video link.

We will use a different method today to compare the volume of water. The water in Containers A, B and C can be poured into cups of the same size. Each cup of water will now represent 1 unit. If we pour the water from the three containers into the cups, we can see which container has the most units of water.

Container B has the most water.

DAY 3 RESOURCES:

THINK: Can you help me with this problem? My friend bought these from the shop. How much liquid is in each container?

Look at page 184 of your textbook pages now. Be sure to read all of the information as many times as you need to understand.

DO:

Part 1:

Complete questions 1, 2 and 3 from the textbook page 190.
Check your answers, below.
Part 2:
Now complete pages 159-161 of your workbook.

Check your answers, below.

SEE: Optional video link.

A 'litre' is a unit of measurement for volume. Litres are used to measure larger containers.

We can measure volume using a 1 -litre beaker. There are 1000 millilitires in 1 litre.

We can pour the water from the bottle into a beaker. The volume of water is about 1 litre.
A litre is a unit of volume.
We write I for litre.
The volume of water is 1000 ml which is the same as 11 .

We can pour the cooking oil from the bottle into 1 litre beakers. The volume of cooking oil is more than 1 litre. The volume of cooking oil is 21 .

We can pour the juice from the carton into a glass.
 The beaker contains less than 11 of juice.

ess

The volume of juice is 250 ml . This is less than 11.

DAY 4 RESOURCES:

THINK: Can you help me with this problem? My friend collected some soap containers from different hotels. How much liquid is in each container? How many bottles can 11 of water fill?

Look at page 191 of your textbook pages now. Be sure to read all of the information as many times as you need to understand.

Remember: Millilitres are used to measure smaller containers.

DO:

Part 1:
Complete all the questions from the textbook page 193.
Check your answers, below.
Part 2:
Now complete page 162 of your workbook.
Check your answers, below.

SEE: Optional video link.

'Millilitres' is another unit of measurement.
Millilitres are used to measure smaller containers.
This bottle holds 20 millilitres of liquid.
20 millilitres is written like this: 20 ml
1 litre of water can fill about 50 bottles like this one.
We can measure volume with a 100 ml measuring beaker. The volume is 20 milililitres.

DAY 5 RESOURCES:

THINK: Can you help me with this problem? My friend pours some water into a beaker from a mug. What is the volume of the water in the beaker?

SEE:

We are measuring using millilitres again today.
Our beaker is different because it doesn't show us as many numbers as it did yesterday. We have to work out what we are counting up in to find the volume of the mug.

This is a 100 ml beaker. The beaker shows me the numbers 0,50 and 100. I know that both 50 and 100 are in my ten times tables so the scale must be going up in tens. Let's count up in tens to find out the volume of the mug...

10, 20, 30, 40.

The volume is 40 ml .

DO: Write the volume of water in each jug.

1a)

c)

d)

e)

Fill in the blanks for each problem:
2a) Ella needs more than 70 ml but less than 100 ml . She needs to use jug \qquad
b) Jack needs 50 ml . He needs to use jug \qquad —.
c) Kasim needs more than 0 ml but less than 20 ml . He needs to use jug \qquad

ANSWERS - part 1:

ANSWERS - part 2:

[^0]: See below for resources to support you to THINK-SEE-DO

